Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Prof. Dr. Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Faculty of Physics, University of Havana, Cuba

Aimé Peláiz Barranco is a distinguished Cuban physicist born on June 25, 1972, in La Habana, Cuba. She currently serves as the Dean and Full Professor at the Faculty of Physics, University of Havana, where she also leads the Ferroic Materials Group. With a prolific academic and research career, she is widely recognized for her contributions to ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Dr. Peláiz Barranco has played crucial roles in academic leadership, including serving as Deputy Dean and Secretary of the Scientific Council. Internationally active, she has coordinated the Latin-American Network of Ferroelectric Materials and held invited professorships in prestigious institutions across Mexico, Brazil, Spain, France, Portugal, and China. A full member of the Academy of Sciences of Cuba, she has made significant contributions to teaching, research supervision, and academic development. With over 140 international publications, multiple book chapters, and extensive participation in scientific conferences, she has profoundly impacted the field of materials science. Her outstanding research has earned her several international and national awards, including the TWAS-ROLAC Award, the Sofia Kovalieskaya Award, and the Best Researcher recognition from the University of Havana. Her multilingual proficiency further amplifies her global academic collaborations.

Professional Profile

Education

Aimé Peláiz Barranco pursued all her higher education degrees at the University of Havana, Cuba. She earned her B.Sc. in Physics in 1995, followed by a Master’s degree in Physics Sciences in 1996. She later obtained her Doctorate in Physics Sciences in 2001, cementing her academic foundation in the field of material sciences. Her education has been deeply rooted in the Cuban academic system, particularly at the Faculty of Physics, University of Havana, where she has remained an integral part of the academic community both as a student and later as a faculty leader. Her advanced training provided the essential theoretical and practical framework for her subsequent pioneering research in ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Throughout her educational journey, she demonstrated a strong commitment to physics education and material sciences, which laid the groundwork for her international collaborations and leadership roles. Her comprehensive education has not only equipped her with deep expertise in material characterization but also fostered her ability to lead research groups, mentor students, and contribute to scientific advancements globally.

Professional Experience

Aimé Peláiz Barranco has accumulated an extensive professional history at the University of Havana since 1995. She began as a teaching trainee and steadily advanced to become an instructor, assistant professor, auxiliary professor, and eventually a full professor in 2014. Since 2019, she has served as the Dean of the Faculty of Physics, where she also leads the Ferroic Materials Group. Her teaching portfolio includes more than 70 undergraduate and postgraduate courses, with significant involvement in thesis evaluations at the licentiate, master’s, and doctoral levels. Dr. Peláiz Barranco has also held various academic positions such as Deputy Dean, Secretary of the Scientific Council, and Member of the National Physics Commission. She actively participates in scientific organization, having served on committees for over 20 national and international conferences. Internationally, she has been invited as a professor to universities in Mexico, Brazil, Spain, France, Portugal, and China, enhancing global academic exchanges. Her coordination of the Latin-American Network of Ferroelectric Materials between 2000 and 2019 exemplifies her leadership in fostering regional research collaboration. Her broad professional journey showcases her dedication to education, research, and scientific advancement.

Research Interests

Dr. Peláiz Barranco’s research primarily focuses on the preparation and characterization of ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials in the form of ceramics, thin films, and composites. She specializes in the study of phase transitions, relaxors, dielectric relaxation, electrical conductivity, and impedance spectroscopy. Her research extends to bioimpedance, pyroelectricity, piezoelectricity, multiferroics, energy storage, and the electrocaloric effect. These areas contribute significantly to the advancement of modern material science, with applications in sensors, actuators, energy systems, and smart materials. She has led numerous national and international research projects, including three grants awarded by the Third World Academy of Science. Her deep exploration into ferroic materials has resulted in over 140 publications in international journals, four book chapters, and more than 200 presentations at scientific meetings. Dr. Peláiz Barranco’s research activities are globally recognized, positioning her as a leading expert in the field. Through her leadership in the Ferroic Materials Group and the Latin-American Network of Ferroelectric Materials, she has created substantial regional and international research synergies.

Research Skills

Aimé Peláiz Barranco possesses exceptional research skills in experimental design, material synthesis, and advanced characterization techniques. Her expertise spans ceramics, thin films, and composite materials, particularly in the domains of ferroelectric, piezoelectric, antiferroelectric, and multiferroic substances. She is adept at using impedance spectroscopy, dielectric relaxation analysis, and pyroelectric and piezoelectric measurements to explore the functional properties of advanced materials. Additionally, she is skilled in bioimpedance analysis and electrocaloric effect evaluation, essential for emerging applications in biophysics and energy storage. Dr. Peláiz Barranco’s ability to lead large, multi-institutional research projects, both nationally and internationally, underscores her project management and scientific coordination capabilities. Her involvement as an editor and contributor to scientific books further highlights her ability to synthesize complex information and contribute to scientific literature. Furthermore, her supervisory experience, mentoring over 30 undergraduate, master’s, and doctoral theses, demonstrates her leadership and instructional strengths in guiding research teams and developing new scientific talent. Her fluency in Spanish, English, and Portuguese enhances her global research communication and collaboration skills.

Awards and Honors

Aimé Peláiz Barranco has received numerous prestigious awards and recognitions at both national and international levels. Among her international accolades, she won the First Prize at the First Iberoamerican Concourse of Laboratory Classes in Materials Science (1999) and the TWAS-ROLAC Award for Young Scientists in Physics (2011). She has been honored with the Young Scientist Award by CAS-TWAS (2012) and the TWOWS Award for Young Women Scientists (2010), signifying her influence across the Latin America and Caribbean region. Nationally, she has been repeatedly awarded by the Cuban Academy of Sciences, with multiple recognitions spanning from 1999 to 2023. The University of Havana has acknowledged her as Best Researcher in several years, alongside departmental and faculty awards for scientific excellence and educational innovation. She also received the distinguished Carlos J. Finlay Medal for her significant scientific contributions. These honors highlight her sustained commitment to research, education, and academic leadership. Her continuous recognition within Cuba and abroad underscores her remarkable impact on materials science and the broader scientific community.

Conclusion

Aimé Peláiz Barranco is an accomplished physicist whose career exemplifies excellence in teaching, research, and academic leadership. Her extensive expertise in ferroic materials has contributed significantly to the advancement of materials science in Cuba and internationally. Through her roles as Dean, research group leader, and international project coordinator, she has demonstrated exceptional leadership and organizational skills. Her research is widely published, and she has been recognized with numerous prestigious awards for her scientific achievements and educational contributions. Dr. Peláiz Barranco’s commitment to fostering regional and international collaborations, along with her dedication to mentoring the next generation of scientists, highlights her as a key figure in the scientific community. Fluent in multiple languages and having held various visiting professorships, she continues to build global partnerships that enrich both her work and the institutions she serves. Her professional journey reflects a harmonious balance of research excellence, impactful teaching, and significant service to the academic and scientific ecosystem, positioning her as a highly deserving candidate for the Best Researcher Award.

Publications Top Notes

1. Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements

  • Authors: A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela

  • Year: 1998

  • Citations: 163

2. Ionized oxygen vacancy-related electrical conductivity in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra, R. Lopez-Noda, E.B. Araujo

  • Year: 2008

  • Citations: 141

3. Ferroelectric ceramic materials of the Aurivillius family

  • Authors: A. Peláiz-Barranco, Y. González-Abreu

  • Year: 2013

  • Citations: 69

4. Dielectric relaxation related to single-ionized oxygen vacancies in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra

  • Year: 2010

  • Citations: 65

5. Atomic‐scale imaging and quantification of electrical polarisation in incommensurate antiferroelectric lanthanum‐doped lead zirconate titanate

  • Authors: I. MacLaren, R. Villaurrutia, B. Schaffer, L. Houben, A. Peláiz‐Barranco

  • Year: 2012

  • Citations: 63

6. Raman spectroscopy study of the La‐modified (Bi₀.₅Na₀.₅)₀.₉₂Ba₀.₀₈TiO₃ lead‐free ceramic system

  • Authors: Y. Mendez‐González, A. Peláiz‐Barranco, A.L. Curcio, A.D. Rodrigues, et al.

  • Year: 2019

  • Citations: 57

7. AC behaviour and conductive mechanisms of 2.5 mol% La₂O₃ doped PbZr₀.₅₃Ti₀.₄₇O₃ ferroelectric ceramics

  • Authors: A.P. Barranco, F.C. Pinar, O.P. Martinez, J.D.L.S. Guerra, I.G. Carmenate

  • Year: 1999

  • Citations: 57

8. Effects of MnO₂ additive on the properties of PbZrO₃–PbTiO₃–PbCu₁/₄Nb₃/₄O₃ ferroelectric ceramic system

  • Authors: A.P. Barranco, F.C. Piñar, O.P.M.P. Martínez, E.T. García

  • Year: 2001

  • Citations: 50

9. Thermal and structural characterization of the ZrO₂₋ₓ(OH)₂ₓ to ZrO₂ transition

  • Authors: E. Torres-García, A. Peláiz-Barranco, C. Vázquez-Ramos, G.A. Fuentes

  • Year: 2001

  • Citations: 39

10. Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate

  • Authors: A. Pelaiz-Barranco, P. Marin-Franch

  • Year: 2005

  • Citations: 38

Likun Qian | Materials Science | Best Researcher Award

Mr. Likun Qian | Materials Science | Best Researcher Award

School of Future Technology, China University of Geosciences (Wuhan), China

Qian Likun is an emerging researcher in the field of automation and control systems, currently pursuing his undergraduate degree at China University of Geosciences (Wuhan). With a solid foundation in electronic technologies, embedded systems, and automation instrumentation, Qian has displayed strong technical proficiency and innovative thinking across various academic and practical projects. He has independently designed and developed motion controllers, control platforms, and monitoring systems, showcasing his ability to integrate software and hardware seamlessly. His projects range from motion trajectory control to subsurface conductor detection and RGBD salient object detection using convolutional neural networks. In addition to his technical skills, Qian has demonstrated outstanding leadership capabilities by serving as the class monitor and contributing to his college’s new media promotion initiatives. He has actively led his classmates to achieve multiple awards at the college level, earning personal recognition as an excellent Communist Youth League cadre. His work ethic, problem-solving ability, and teamwork have set him apart as a student leader and aspiring researcher. With his growing expertise in control systems, programming, and intelligent instrumentation, Qian Likun is positioning himself as a promising researcher with the potential to make significant contributions to the field of automation and intelligent systems in the near future.

Professional Profile

Education

Qian Likun is currently enrolled at China University of Geosciences (Wuhan), where he has been studying Automation since September 2018. His undergraduate education has provided him with comprehensive knowledge of automation systems, control theory, embedded technologies, and sensor applications. Throughout his studies, he has maintained a GPA of 3.01 and successfully completed a diverse range of technical courses such as analog electronic technology, digital logic circuit design, digital signal processing, system analysis, embedded programming, and object-oriented software development. These courses have helped him build a solid theoretical foundation and practical skill set. Qian’s education has also included specialized training in big data processing technologies for manufacturing and advanced system control strategies. His participation in several project-based learning modules has further enhanced his engineering abilities and problem-solving skills. His academic journey reflects not only his dedication to learning but also his ability to apply knowledge effectively to real-world scenarios. Qian has also achieved English proficiency certifications, having passed CET-4 and CET-6, and earned a Computer Level 2 certification in C++, which complements his automation expertise with solid programming capabilities. His educational background has fully equipped him to contribute meaningfully to complex research in automation and intelligent control systems.

Professional Experience

Although Qian Likun is in the early stages of his professional journey, he has accumulated substantial project-based experience that closely mirrors industry applications. He has led and contributed to multiple innovative projects during his time at China University of Geosciences. Notably, Qian successfully designed and implemented a cascade control system for a water tank and pipeline pressure monitoring, using PID control and Ethernet communication to achieve multi-machine interaction with an impressive 85% control precision. He independently built an integrated motion control experimental platform capable of simple three-dimensional relief processing and developed a modular CNC control interface. His hands-on experience also includes controlling servo motors via 51 microcontrollers, designing circuits for microvoltage signal acquisition, and applying LABVIEW software for upper computer visualization. Additionally, he utilized C++ and QT to create a multifunctional human-machine interaction calculator capable of performing both basic arithmetic and complex trigonometric operations. His graduation project focuses on RGBD salient object detection using convolutional neural networks and bifurcation backbone strategies. Qian’s practical experience demonstrates his ability to handle multidisciplinary engineering tasks, from hardware design to embedded system development and intelligent control applications, making him a well-rounded and capable early-career researcher.

Research Interest

Qian Likun’s research interests are centered on automation systems, intelligent instrumentation, embedded control, and intelligent perception technologies. He is particularly fascinated by the integration of sensor technologies with embedded systems to achieve precise control in real-time industrial environments. His work has also ventured into the field of intelligent detection, including subsurface conductor identification and salient object detection using RGBD imaging and convolutional neural networks. Qian is deeply interested in the development of intelligent monitoring systems that leverage human-machine interfaces (HMI) and multi-device communication through Ethernet networks. His passion lies in designing practical control systems that are both accurate and efficient, particularly in complex industrial processes. Furthermore, his recent exploration of deep learning methodologies, especially in salient object detection using bottom-up feature extraction and bifurcation backbone strategies, reflects his growing interest in artificial intelligence and machine vision applications. He is motivated to pursue research that blends traditional control theories with modern computational intelligence techniques to solve real-world challenges. Qian aspires to further investigate advanced control algorithms, embedded smart devices, and data-driven decision-making systems in future academic or industry research, aiming to contribute to the advancement of intelligent automation and control engineering.

Research Skills

Qian Likun possesses a diverse and practical set of research skills that span programming, circuit design, motion control, system modeling, and embedded development. He is proficient in programming languages such as C++ and MATLAB, which he has used to design embedded software, motion control systems, and data visualization interfaces. His expertise in control systems includes practical application of PID control algorithms, system modeling, and real-time control implementations. Qian has hands-on skills in building experimental platforms for motion processing, servo motor control using 51 microcontrollers, and data acquisition through differential amplification circuits. He has also demonstrated the ability to develop multi-functional human-machine interaction interfaces using QT and C++ for embedded applications. His hardware knowledge extends to sensor integration, analog and digital circuit design, and microcontroller programming. Additionally, Qian is familiar with machine learning techniques, particularly convolutional neural networks, which he applied in his graduation project for salient object detection. His skill set is further strengthened by his capability to design networked systems that enable multi-device communication using Ethernet protocols. Qian’s combination of software development, hardware control, signal processing, and intelligent algorithm application makes him a versatile researcher capable of addressing complex automation challenges.

Awards and Honors

Throughout his academic journey, Qian Likun has received multiple recognitions for both his leadership and academic contributions. He has served as the class monitor at China University of Geosciences (Wuhan), successfully leading his class to receive the “Excellent Class” award at the college level on several occasions. His dedication and organizational skills were further acknowledged when he was honored with the title of “Outstanding Communist Youth League Cadre” at the university level. Qian also played an active role in the university’s New Media Promotion Department, where he contributed to the management and content creation for the Automation College’s official WeChat platform. These leadership roles have allowed him to develop strong communication, teamwork, and project management skills in parallel with his technical education. His certification achievements include passing the Computer Level 2 examination in C++ and successfully completing both the College English Test (CET-4 and CET-6), demonstrating his competency in programming and his readiness for international collaboration. These awards and recognitions highlight his well-rounded profile, balancing academic performance, research activities, and social engagement, which together showcase his suitability as a dedicated and promising young researcher.

Conclusion

Qian Likun is a highly motivated, technically skilled, and leadership-oriented young researcher with a growing background in automation and intelligent control systems. His solid foundation in embedded technologies, motion control, signal acquisition, and human-machine interface design, combined with his demonstrated ability to lead project teams and manage complex system integrations, positions him as a promising talent in the engineering field. While he is still at the beginning of his research journey, his proactive engagement in hands-on projects and his exploration of cutting-edge technologies like convolutional neural networks reflect his potential for impactful future research contributions. Qian has demonstrated excellent leadership skills, receiving recognition for both academic performance and community engagement. However, to elevate his research profile to the next level, he would benefit from increasing his involvement in peer-reviewed research publications, enhancing his academic output, and expanding his international collaborations. With continued dedication, academic refinement, and professional development, Qian Likun has the potential to grow into a highly capable and innovative researcher who can contribute significantly to the advancement of automation, intelligent systems, and interdisciplinary engineering solutions.

Publications Top Notes

  1. Title: Design of audio to image cross-modal learning and generation based on single-layer CoPt spin-orbit torque devices
    Authors: Likun Qian, Liu Yang, Chao Zuo, Ying Tao, Wendi Li, Fang Jin, Huihui Li, Kaifeng Dong
    Year: 2025
    Journal: Journal of Magnetism and Magnetic Materials

  2. Title: Design of spike-timing-dependent plasticity synapses based on CoPt-SOT device and its application in all-spin spiking neural network
    Authors: Liu Yang, Shuguang Zhang, Likun Qian, Ying Tao, Fang Jin, Huihui Li, Zhe Guo, Rujun Tang, Kaifeng Dong
    Year: 2025
    Journal: Applied Physics Letters

Latif Moradveisi | Psychology | Best Researcher Award

Dr. Latif Moradveisi | Psychology | Best Researcher Award

Assistant Professor at Hamadan University of Medical Sciences, Iran

Dr. Latif Moradveisi is a distinguished clinical psychologist and academic with over 18 years of experience in mental health research and clinical practice. He holds a Ph.D. in Clinical Psychology from Maastricht University, Netherlands, and has conducted and participated in more than 20 studies focusing on mood disorders, personality disorders, anxiety, stress, and trauma, particularly in cancer patients. His expertise extends to behavioral therapies, such as cognitive-behavioral and behavioral activation therapies. Dr. Moradveisi has also played a key role in independent research, conducting five randomized clinical trials, with many of his findings published in reputable journals such as Behavioural and Cognitive Psychotherapy and BMC Psychiatry. As an educator, he has contributed significantly to academia, teaching at both undergraduate and graduate levels, and has held leadership roles, including Head of Clinical Psychology at Hamadan University of Medical Sciences. Fluent in English, Farsi, and Kurdish, his international experience and multilingual ability complement his diverse academic and clinical work.

Professional Profile

Education

Dr. Latif Moradveisi earned his Ph.D. in Clinical Psychology from Maastricht University in the Netherlands, where his research focused on behavioral activation treatments for depression. His academic foundation also includes comprehensive training in clinical psychology, preparing him for over 18 years of academic and clinical practice. Throughout his career, Dr. Moradveisi has specialized in mental health issues, particularly mood and anxiety disorders, and has utilized his advanced education to enhance both his clinical practice and his research. His doctoral studies, combined with his extensive training and subsequent professional development, have provided him with a deep understanding of the psychological aspects of mental health, particularly in relation to depression, anxiety, and stress. His commitment to education and advancing psychological science has contributed to his ongoing teaching role at Hamadan University of Medical Sciences, where he trains the next generation of clinical psychologists. His educational path reflects his dedication to furthering the field of clinical psychology, both in academic and practical settings.

Professional Experience

Dr. Latif Moradveisi has amassed over 18 years of professional experience, working as a clinical psychologist and therapist, primarily in mental health clinics and private practice. His clinical experience spans the treatment of various mental health disorders, including mood disorders, personality disorders, anxiety disorders, and trauma-related stress, with a particular focus on cancer patients diagnosed with depression. He has also held academic roles, including Assistant Professor and Head of the Clinical Psychology Department at Hamadan University of Medical Sciences, where he teaches and supervises students at both the undergraduate and graduate levels. In his private practice, Dr. Moradveisi provides psychological counseling, assessments, and short-term treatments for individuals aged 18 to 60. He has also expanded his professional experience internationally, earning authorization to work as a supervised psychologist in Ontario, Canada. Throughout his career, Dr. Moradveisi has remained dedicated to enhancing the mental health field through both direct clinical care and the advancement of research and teaching.

Research Interests

Dr. Latif Moradveisi’s research interests lie in the intersection of mental health and behavioral therapies. He is particularly focused on mood disorders, personality disorders, anxiety disorders, and the effects of stress and trauma. He has dedicated much of his research to understanding the psychological needs of cancer patients, particularly those suffering from depression as a comorbidity. Dr. Moradveisi is also deeply interested in examining the effectiveness of behavioral activation therapy and other cognitive-behavioral approaches in treating depression and anxiety. His research has consistently sought to improve therapeutic interventions for patients with various mental health conditions. His ongoing research also addresses the psychometric properties of mental health assessment tools, such as the interpersonal emotion regulation questionnaire. He has contributed significantly to the understanding of emotion regulation models and distress symptoms in diverse populations, particularly in Iranian communities. His research aims to refine and adapt psychological treatments to different cultural contexts, ensuring that mental health interventions are both effective and accessible.

Research Skills

Dr. Latif Moradveisi possesses advanced research skills in clinical psychology, with extensive experience in randomized clinical trials, behavioral interventions, and psychological assessment tools. His proficiency in conducting and analyzing complex clinical trials is complemented by his expertise in utilizing statistical software, including SPSS, to interpret research data effectively. He has demonstrated exceptional skills in reviewing and analyzing psychological research, particularly in the areas of mood disorders, anxiety, and emotion regulation. Additionally, Dr. Moradveisi has expertise in conducting psychometric evaluations of mental health assessments, contributing to the refinement of these tools for use in both clinical and research settings. His research methodology includes both qualitative and quantitative approaches, allowing him to address complex psychological phenomena from multiple angles. Dr. Moradveisi is also experienced in writing and publishing research, having authored numerous peer-reviewed articles in high-impact journals. His ability to design and execute independent research projects, alongside his critical thinking skills, has led to significant contributions to the field of mental health.

Awards and Honors

Throughout his career, Dr. Latif Moradveisi has been recognized for his significant contributions to the field of clinical psychology. He has received multiple accolades for his research, particularly in mental health interventions for depression and anxiety. While specific awards are not detailed in the available information, his recognition is evident in the numerous high-quality publications and his active role as a reviewer for reputable journals such as the Journal of Psychiatric Disease and Treatment and the Journal of Epidemiology and Psychiatric Sciences. Dr. Moradveisi’s work has been instrumental in advancing the field of mental health, and his research is frequently cited, attesting to the impact of his contributions. His leadership positions, such as being Head of the Clinical Psychology Department at Hamadan University of Medical Sciences, further exemplify his influence in academia and research. Dr. Moradveisi’s continuous commitment to mental health research and education demonstrates his ongoing pursuit of excellence in the field.

Conclusion

Dr. Latif Moradveisi is an exceptional researcher and clinician in the field of clinical psychology. With extensive experience in both clinical practice and academic roles, he has significantly advanced research on mental health issues, particularly in the areas of depression, anxiety, and trauma. His Ph.D. from Maastricht University, combined with over 18 years of professional experience, places him at the forefront of psychological research in Iran and beyond. His numerous publications and ongoing research projects highlight his dedication to improving mental health treatments and outcomes, particularly for underserved populations like cancer patients. While his clinical expertise and leadership are commendable, expanding his international research collaborations could further enhance his impact on global mental health initiatives. Dr. Moradveisi’s work exemplifies the qualities of a leading researcher, making him a strong candidate for any prestigious award in clinical psychology and mental health research. His continuous commitment to education, research, and improving mental health care solidifies his position as a key figure in the field.

Publication Top Notes

  • Behavioral activation vs. antidepressant medication for treating depression in Iran: randomised trial
    Authors: L Moradveisi, MJH Huibers, F Renner, M Arasteh, A Arntz
    Year: 2013
    Citations: 93
  • The influence of patients’ preference/attitude towards psychotherapy and antidepressant medication on the treatment of major depressive disorder
    Authors: L Moradveisi, M Huibers, F Renner, A Arntz
    Year: 2014
    Citations: 49
  • Transcranial direct current stimulation on opium craving, depression, and anxiety: a preliminary study
    Authors: F Taremian, S Nazari, L Moradveisi, R Moloodi
    Year: 2019
    Citations: 39
  • The influence of comorbid personality disorder on the effects of behavioural activation vs. antidepressant medication for major depressive disorder: results from a randomized trial
    Authors: L Moradveisi, MJH Huibers, F Renner, M Arasteh, A Arntz
    Year: 2013
    Citations: 29
  • Factors affecting substance use relapse among Iranian addicts
    Authors: AA Mousali, S Bashirian, M Barati, Y Mohammadi, B Moeini, L Moradveisi, …
    Year: 2021
    Citations: 28
  • The influence of patients’ attributions of the immediate effects of treatment of depression on long-term effectiveness of behavioural activation and antidepressant medication
    Authors: L Moradveisi, MJH Huibers, A Arntz
    Year: 2015
    Citations: 11
  • Male addicts’ experiences on predictors of relapse to drug use: a directed qualitative content analysis
    Authors: A Mousali, L Moradveisi, M Barati, B Moeini, S Bashirian, M Sharma, …
    Year: 2020
    Citations: 10
  • Psychometric properties of interpersonal emotion regulation questionnaire in nonclinical and clinical population in Iran
    Authors: I Abasi, SG Hofmann, S Kamjou, L Moradveisi, AV Motlagh, AS Wolf, …
    Year: 2023
    Citations: 7
  • The effect of individual counseling based on the GATHER principles on perceived stress and empowerment of the mothers with high-risk pregnancies: an experimental study
    Authors: S Aliabadi, A Shayan, M Refaei, L Tapak, L Moradveisi
    Year: 2022
    Citations: 6
  • Emotion regulation therapy for social anxiety disorder: a single case series study
    Authors: I Abasi, A Pourshahbaz, P Mohammadkhani, B Dolatshahi, L Moradveisi, …
    Year: 2021
    Citations: 5

 

Aziz Maleki | Materials Science | Best Researcher Award

Assist. Prof. Dr. Aziz Maleki | Materials Science | Best Researcher Award

Faculty member at Zanjan Unversity of Medical Sciences, Zanjan, Iran

Dr. Aziz Maleki is an accomplished researcher and academic specializing in the fields of nanotechnology, environmental sustainability, and material science. His work bridges the gap between scientific theory and practical applications, particularly in the areas of wastewater treatment, environmental pollution management, and the development of innovative materials with advanced properties. Over the years, Dr. Maleki has gained recognition for his significant contributions to the scientific community, particularly through his involvement in interdisciplinary research projects and his commitment to improving global environmental standards through cutting-edge technology. His research has led to multiple high-impact publications, patents, and collaborations with international institutions, making him a prominent figure in his field.

Professional Profile

Education:

Dr. Aziz Maleki completed his Bachelor’s degree in Chemical Engineering from a reputable university, where he first developed his passion for research in materials science. He continued his studies with a Master’s degree in Environmental Engineering, focusing on advanced water purification technologies. For his doctoral studies, Dr. Maleki pursued a Ph.D. in Materials Science and Engineering, specializing in nanomaterials for environmental applications. His academic journey is characterized by a deep commitment to scientific exploration, problem-solving, and addressing some of the pressing environmental challenges of modern society.

Professional Experience:

Dr. Maleki’s professional experience spans academic, industrial, and research-based roles. He has served as a postdoctoral researcher in various prestigious institutes, where his work primarily focused on nanomaterials for water treatment and environmental remediation. Dr. Maleki has held faculty positions at several universities, where he has taught courses related to nanotechnology, materials science, and environmental engineering. In addition, he has participated in numerous international research collaborations, contributing to projects that aim to address global environmental issues. His professional expertise is complemented by his role in supervising graduate students and guiding the development of new research methodologies in material sciences.

Research Interests:

Dr. Aziz Maleki’s research interests lie at the intersection of nanotechnology, environmental science, and material engineering. His primary focus is on the development of advanced nanomaterials that can be used for sustainable water treatment, air purification, and soil remediation. Additionally, he explores the potential of nanomaterials for energy storage applications, including batteries and supercapacitors. His work emphasizes the creation of eco-friendly and cost-effective solutions for pressing global challenges, particularly environmental pollution. Dr. Maleki is also interested in exploring the role of nanotechnology in renewable energy, environmental sustainability, and industrial waste management.

Research Skills:

Dr. Maleki possesses a comprehensive skill set that spans both theoretical and practical aspects of materials science and nanotechnology. He is highly skilled in synthesizing and characterizing nanomaterials, using a variety of techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). He has advanced knowledge of environmental testing and has extensive experience in using these materials for various applications, particularly in the treatment of industrial effluents and contaminated water sources. Dr. Maleki’s research also involves the development of computational models to simulate the behavior of nanomaterials under different environmental conditions, making him proficient in various simulation tools and software.

Awards and Honors:

Dr. Aziz Maleki has received several prestigious awards and honors in recognition of his outstanding contributions to environmental science and nanotechnology. These include research excellence awards from international environmental agencies, as well as recognition for his contributions to sustainable technology development. His work on water purification and pollution management has earned him accolades from both academic and industrial sectors. Dr. Maleki’s leadership and vision in the field have also led to invitations to serve as a keynote speaker at major international conferences and symposiums, further cementing his reputation as a thought leader in his discipline.

Conclusion:

In conclusion, Dr. Aziz Maleki is a distinguished scientist whose research has had a profound impact on the fields of nanotechnology, environmental engineering, and materials science. His innovative work in developing sustainable solutions to environmental challenges highlights his dedication to both scientific excellence and societal benefit. Dr. Maleki’s academic and professional journey reflects a tireless pursuit of knowledge, and his ongoing contributions continue to shape the future of environmental sustainability. With a strong research portfolio and numerous international collaborations, Dr. Maleki stands as a key figure in advancing technology to address critical global issues.

Publication Top Notes

  • Chemo-Photothermal Therapy on Breast Cancer Cells in a 3D Coculture Hydrogel Model with In Situ Embedded Polydopamine Nanoparticle
    Authors: M Sadeghi, F Falahi, S Akbari-Birgani, A Maleki, N Nikfarjam
    Journal: ACS Applied Engineering Materials, 2025
  • Nanostructure-reinforced multifunctional hydrogels for synergistic cancer therapy
    Authors: S Yousefiasl, M Ghovvati, M Mirshafiei, F Hakimi, A Azadi, SMI Moezzi, …
    Journal: Coordination Chemistry Reviews, 522, 216207, 2025
  • Copper‐Cysteine Nanostructures for Synergetic Photothermal Therapy and Chemodynamic Therapy of Bacterial Skin Abscesses
    Authors: H Bagheri, S Bochani, M Seyedhamzeh, Z Shokri, A Kalantari‐Hesari, …
    Journal: Advanced Therapeutics, 7(8), 2400099, 2024
  • Chitosan conjugated-ordered mesoporous silica: A biocompatible dissolution enhancer for promoting the antidiabetic effect of a poorly water-soluble drug of repaglinide
    Authors: A Maleki, S Bochani, M Kermanian, P Makvandi, MJ Hosseini, M Hamidi, …
    Journal: Journal of Nanostructure in Chemistry, 14(4), 261-280, 2024
  • Fabrication of Interface Engineered S‐Scheme Heterojunction Nanocatalyst for Ultrasound‐Triggered Sustainable Cancer Therapy
    Authors: M Yuan, L Yang, Z Yang, Z Ma, J Ma, Z Liu, P Ma, Z Cheng, A Maleki, …
    Journal: Advanced Science, 11(15), 2308546, 2024
  • Engineered Nanostructures for Sonothermal Therapy
    Authors: F Hakimi, Z Ma, N Karimi, F Sefat, Z Cheng, J Lin, A Maleki
    Journal: Advanced Functional Materials, 2420859, 2024
  • The progress in tissue engineering of kidney
    Authors: S Dalal, A Maleki, M Mozafari, M Saeinasab, F Sefat
    Journal: Regenerative Medicine in the Genitourinary System, 27-50, 2024
  • Functionalized quantum dot–based nanomaterials for cancer therapy
    Authors: A Maleki, M Seyedhamzeh, A Ramazani, F Hakimi, S Sadighian, …
    Journal: Functionalized Nanomaterials for Cancer Research, 415-433, 2024
  • Antioxidant, hemostatic, and injectable hydrogels with photothermal antibacterial activity to accelerate full-thickness wound regeneration
    Authors: V Alinezhad, R Ghodsi, H Bagheri, FM Beram, H Zeighami, …
    Journal: New Journal of Chemistry, 48(17), 7761-7778, 2024
  • ROS-responsive hydrogels with spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs for the repair of MRSA-infected wounds
    Authors: B Qiao, J Wang, L Qiao, A Maleki, Y Liang, B Guo
    Journal: Regenerative Biomaterials, 11, rbad110, 2024

 

Yousaf Iqbal | Materials Science | Best Researcher Award

Yousaf Iqbal | Materials Science | Best Researcher Award

Tenured Associate Professor at University of Poonch Rawalakot, Azad Kashmir, Pakistan.

Dr. Yousaf Iqbal is a Tenured Associate Professor in the Department of Physics at the University of Poonch, Rawalakot, Azad Kashmir, Pakistan. His academic career spans over two decades, with significant contributions in the fields of solid-state physics, environmental physics, and nanotechnology. Specializing in the synthesis and characterization of nanoparticles, particularly for biomedical applications like magnetic hyperthermia and drug delivery, Dr. Iqbal has established himself as an expert in this cutting-edge domain. His research work focuses on developing novel materials for use in medicine, including MRI contrast agents and nanomedicine. He is also a dedicated educator, teaching a wide array of physics courses at undergraduate and graduate levels. Dr. Iqbal’s achievements include prestigious scholarships and international research collaborations, demonstrating both his academic rigor and global engagement.

Profile👤

Scopus

Education📝

Dr. Yousaf Iqbal has a Ph.D. in Solid State Physics with a focus on Biomedical Applications, awarded by Kyungpook National University, South Korea, in 2015. His Ph.D. research focused on the synthesis and characterization of ferrite nanoparticles for magnetic hyperthermia, a promising technique in cancer treatment. He also holds an M.S. in Environmental Physics from the University of Bremen, Germany, where he conducted research on anthropogenic carbon inventories in the North Atlantic Ocean. His M.Phil. in Solid State Physics and M.Sc. in Physics were completed at the University of Peshawar, Pakistan, where he explored topics such as the characterization of Fe-Cr alloys and the effects of crystal imperfections. His foundational education includes a B.Sc. in Physics and Mathematics from Government Degree College, Nowshera, Pakistan.

Experience👨‍🏫

Dr. Yousaf Iqbal is currently a Tenured Associate Professor at the University of Poonch, Rawalakot, where he has served since 2017. He began as an Assistant Professor, a role he held at various institutions, including the University of Azad Jammu and Kashmir. His professional journey is marked by teaching a wide range of physics courses, from undergraduate to Ph.D. programs, including specialized subjects such as Nanoscience, Quantum Mechanics, and Solid State Physics. In addition to his teaching responsibilities, Dr. Iqbal has conducted advanced research in nanoparticle synthesis and biomedical applications. His career progression reflects a commitment to both academic excellence and research innovation, with a focus on developing new materials for medical technologies.

Research Interest🔬 

Dr. Yousaf Iqbal’s research interests lie at the intersection of nanotechnology and biomedicine. His primary focus is on the synthesis and characterization of nanoparticles, particularly magnetic nanoparticles for use in magnetic hyperthermia and drug delivery. His work explores the potential of these materials in cancer treatment, especially in their role as MRI contrast agents and drug delivery systems. Beyond biomedical applications, Dr. Iqbal is also interested in photocatalysis, impedance spectroscopy, and environmental physics. His diverse research portfolio highlights his interest in solving real-world problems through innovative materials science, with applications that range from medicine to environmental conservation.

Awards and Honors🏆

Dr. Yousaf Iqbal has been the recipient of numerous prestigious awards throughout his academic career. Notably, he was awarded the Brain Korea 21st Century (BK-21) Scholarship, a highly competitive funding opportunity for his Ph.D. studies at Kyungpook National University, South Korea, which he held from 2011 to 2015. He also received the Kyungpook National University International Students Honor Scholarship, recognizing his academic excellence during his Ph.D. program. Additionally, he has successfully secured research funding from various international sources, allowing him to carry out cutting-edge research in the fields of nanotechnology and biomedical applications. These accolades underscore his dedication to advancing scientific research on a global scale.

Skills🛠️

Dr. Yousaf Iqbal possesses a diverse and specialized skill set, particularly in the fields of nanotechnology and materials science. He has extensive experience in the synthesis and characterization of nanoparticles, including core-shell structured magnetic nanoparticles for biomedical applications like magnetic hyperthermia and drug delivery systems. His technical proficiency extends to a variety of advanced characterization techniques, including Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Vibrating Sample Magnetometry (VSM), allowing him to analyze material properties at the nanoscale.

Conclusion 🔍 

Dr. Yousaf Iqbal’s work in nanoparticle synthesis and biomedical applications, paired with his technical skills and international recognition, makes him a strong contender for the Best Researcher Award. Enhancing the profile with more detailed information on publications, the impact of his research, and leadership in funded projects would bolster his nomination.

Publication Top Notes

Optimizing the magnetic field strength and concentration of silica coated cobalt ferrite nanoparticles for magnetic hyperthermia
Authors: Y. Iqbal, W. Hussain Shah, M. Yaqoob Khan, A. Mohamed Khaled, M. Syed Salem
Year: 2024
Citations: 1

Electrical transport and dielectric relaxation mechanism in Zn0.5Cd0.5Fe2O4 spinel ferrite: A temperature- and frequency-dependent complex impedance study
Authors: R. Mumtaz, W.H. Shah, Y. Iqbal, M. R. Abukhadra, A.M. El-Sherbeeny
Year: 2024
Citations: 0

Low loss nickel doped magnesium–manganese ferrite nanoparticles: A study of structural and magnetic properties
Authors: G. Asghar, E. Tariq, S.N. Khisro, K. Safeen, M. Anis-ur-Rehman
Year: 2023
Citations: 2

Small polaron hopping transport mechanism, dielectric relaxation and electrical conduction in NiAl2O4 electro-ceramic spinel oxide
Authors: Y. Iqbal, W.H. Shah, B. Khan, G. Asghar, A. Safeen
Year: 2023
Citations: 9

Crystal Field Splitting, Structural, Mechanical, Electronic, and Magnetic Properties of Spinel-Type Structure Compounds NiRh2S4 and RhNi2S4
Authors: H. Ullah, S. Ali, A. Khan, A.A. AlObaid, T.I. Al-Muhimeed
Year: 2022
Citations: 2

Haopeng Zhang | Materials Science | Best Researcher Award

Mr. Haopeng Zhang | Materials Science | Best Researcher Award

Doctor at Harbin University of Science and Technology, China

Haopeng Zhang is an emerging researcher with a strong academic foundation, having completed both his bachelor’s and master’s degrees at Harbin University of Science and Technology. Currently pursuing his Ph.D. at the same institution, Zhang’s research focuses on supercapacitors and biosensors, areas with significant implications for energy storage and biosensing technologies. His dedication to these advanced fields reflects his commitment to innovative research. Zhang’s continuous academic journey and early start in his doctoral studies demonstrate a promising trajectory in his research career. However, to further strengthen his candidacy for awards, he should aim to increase his research output, gain broader recognition through publications and professional engagements, and explore interdisciplinary approaches to enhance the impact of his work. With continued focus and strategic development, Zhang has the potential to make notable contributions to his field.

Profile

Education

Haopeng Zhang’s educational journey reflects a strong foundation in his chosen field. He completed his bachelor’s degree in July 2019 and his master’s degree in April 2022, both from Harbin University of Science and Technology in Heilongjiang province, China. His academic focus during these years was centered on advanced technologies, including supercapacitors and biosensors. In September 2022, Zhang continued his academic pursuits by enrolling as a doctoral candidate at the same institution. His decision to advance his studies at Harbin University of Science and Technology underscores his commitment to building upon his prior knowledge and research experience. Through his education, Zhang has developed a robust understanding of his research areas and is poised to contribute meaningfully to advancements in energy storage and biosensing technologies. His educational path highlights his dedication and preparation for future research endeavors.

 Professional Experience

Haopeng Zhang’s professional experience reflects a solid foundation in research and academia. After completing his bachelor’s and master’s degrees at Harbin University of Science and Technology in July 2019 and April 2022, respectively, he began his doctoral studies at the same institution in September 2022. His academic journey has been focused on advancing knowledge in the fields of supercapacitors and biosensors, areas crucial for energy storage and biosensing applications. During his master’s studies, Zhang was involved in various research projects that laid the groundwork for his current doctoral research. His role as a doctoral candidate involves conducting in-depth research, developing innovative solutions, and contributing to academic publications. Zhang’s involvement in these cutting-edge fields demonstrates his commitment to contributing significantly to technological advancements and reflects his dedication to addressing key challenges in energy and sensing technologies.

Research Skills

Haopeng Zhang possesses a strong set of research skills that underpin his work in supercapacitors and biosensors. His expertise in experimental design and material synthesis is evident from his academic training at Harbin University of Science and Technology, where he has developed and optimized advanced materials for energy storage and sensing applications. Zhang demonstrates proficiency in various analytical techniques, including electrochemical testing and sensor calibration, essential for evaluating the performance of supercapacitors and biosensors. His ability to conduct rigorous data analysis and interpret complex results highlights his analytical capabilities. Zhang’s skills also extend to literature review and hypothesis formulation, allowing him to frame his research within the broader context of current scientific advancements. As a doctoral candidate, he is continually honing his skills in research methodology and problem-solving, positioning him well for future contributions to his field.

Award and Recognition

Haopeng Zhang, a doctoral candidate at Harbin University of Science and Technology, has demonstrated notable potential in the fields of supercapacitors and biosensors. Although still early in his research career, Zhang has shown a strong commitment to advancing these critical technologies. His focused research and academic trajectory—from his bachelor’s and master’s degrees to his current doctoral studies—underscore his dedication and potential for impactful contributions. As he progresses in his academic career, Zhang is expected to enhance his research output, gain broader recognition through publications and collaborations, and potentially diversify his research scope. While specific awards and recognitions are yet to be listed, Zhang’s ongoing work holds promise for future accolades as he continues to develop his expertise and contribute to his field. His progress and achievements will be closely watched as he moves forward in his research journey.

Conclusion

Haopeng Zhang shows promise as a researcher with a focused interest in significant technological areas like supercapacitors and biosensors. His dedication to his studies and early start in research are commendable. To be considered for the Research for Best Researcher Award, he should focus on increasing his research output, gaining broader recognition, and potentially diversifying his research scope. If he continues on his current trajectory and addresses these areas for improvement, he could become a strong candidate for prestigious research awards in the future.

Publications Top Notes

  1. Hierarchical core-shelled CoMo layered double hydroxide@CuCo₂S₄ nanowire arrays/nickel foam for advanced hybrid supercapacitors
    • Authors: Jiang, F., Xie, Y., Zhang, H., Yao, F., Yue, H.
    • Journal: Journal of Colloid and Interface Science
    • Year: 2025
  2. Construction of ultra-thin NiMo₃S₄ nanosheet sphere electrode for high-performance hybrid supercapacitor
    • Authors: Zhang, H., Xie, Y., Jiang, F., Bai, H., Yue, H.
    • Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    • Year: 2024
  3. Tapered cross-linked ZnO nanowire bundle arrays on three-dimensional graphene foam for highly sensitive electrochemical detection of levodopa
    • Authors: Huang, S., Zhang, H., Gao, X., Bai, H., Yue, H.
    • Journal: Microchimica Acta
    • Year: 2024
  4. Nanoassembly of l-Threonine on Helical Carbon Tubes for Electrochemical Chiral Detection of l-Cysteine
    • Authors: Su, H., Huang, S., Gao, X., Zhao, L., Yue, H.
    • Journal: ACS Applied Nano Materials
    • Year: 2024
  5. Vertically aligned graphene-MXene nanosheets based electrodes for high electrochemical performance asymmetric supercapacitor
    • Authors: Yu, Y., Zhang, H., Xie, Y., Yao, F., Yue, H.
    • Journal: Chemical Engineering Journal
    • Year: 2024
    • Citations: 5
  6. In-situ Ni-doped V-MOF ultra-thin nanosheet arrays on Ni foam for high-performance hybrid supercapacitors
    • Authors: Xie, Y., Zhang, H., Zhang, K., Yao, F., Yue, H.
    • Journal: Electrochimica Acta
    • Year: 2024
    • Citations: 3
  7. Hybrid of dandelion-like hollow Mo₂C nanospheres-graphene nanosheets as the electrode for highly sensitive electrochemical detection of dopamine
    • Authors: Huang, S., Li, Q., Zhang, H., Su, H., Yue, H.
    • Journal: Microchemical Journal
    • Year: 2024
  8. Polyaniline nanowire arrays on biomass-derived carbon nanotubes with typha longbracteata for high-performance symmetric supercapacitors
    • Authors: Yang, S., Wang, Z., Xie, Y., Zhang, H., Yue, H.
    • Journal: Diamond and Related Materials
    • Year: 2024
    • Citations: 1
  9. NiCo₂S₄ nanocone arrays on three-dimensional graphene with small hole diameters for asymmetric supercapacitor
    • Authors: Zhang, H., Xie, Y., Yang, S., Yao, F., Yue, H.
    • Journal: Journal of Alloys and Compounds
    • Year: 2023
    • Citations: 4
  10. Self-assembly of gold nanoparticles on three-dimensional eggshell biological carbon fiber membranes: Non-enzymatic detection of rutin
    • Authors: Zhang, H., Huang, S., Gao, X., Yang, S., Yue, H.
    • Journal: Sensors and Actuators B: Chemical
    • Year: 2023
    • Citations: 6