Obuya Oloo | Engineering | Research Excellence Award

Mr. Obuya Oloo | Engineering | Research Excellence Award

Durban University of Technology | Kenya

Mr. Obuya Oloo Tryphone is an emerging interdisciplinary researcher and engineer specializing in mechatronics, mechanical and industrial engineering, with a strong focus on design, simulation, fracture mechanics, and advanced manufacturing technologies. He holds a Bachelor’s degree in Mechanical Engineering and a Master of Engineering in Industrial Engineering, and is currently pursuing dual master’s programs in Mechatronics at ETH Zurich and Ashesi University under prestigious ETH4D and Tetra Pak scholarships. His research contributions include a peer-reviewed master’s thesis published with Wiley, a book chapter with Elsevier on additive manufacturing for energy storage applications, and applied engineering projects adopted in academic and industrial settings. He has collaborated with international faculty across Europe and Africa and contributed to infrastructure safety, materials research, and laboratory innovation. His work demonstrates clear societal impact through sustainable engineering, education mentorship, and climate-positive initiatives aligned with the SDGs.

ORCID Profile

Featured Publications

Tryphone Obuya Oloo, Oludolapo Akanni Olanrewaju, Samson Oluropo Adeosun, Mohammad Rezwan Habib (2026).
Experimental Analysis of Fracture Mechanics of Aluminum 7075 Alloy Plate With an Edge Crack Using MATLAB Software. Advances in Materials Science and Engineering • Journal Article 

 

Wei Huang | Engineering | Research Excellence Award

Prof. Dr. Wei Huang | Engineering | Research Excellence Award

SINOMACH Research Center of Engineering Vibration Control Technology | China

Prof. Dr. Wei Huang is a senior researcher in engineering vibration control, vibration isolation, and intelligent structural control, with a strong focus on integrating optimization algorithms and deep learning into vibration analysis and mitigation. His research spans active, semi-active, and passive vibration control, magnetorheological dampers, low-frequency isolation systems, and vibration recognition and prediction using CNNs, ResNet, LSTM, Transformer, and reinforcement learning. He has authored more than 35 peer-reviewed journal papers, including SCI/EI-indexed publications, and contributed to 10+ academic monographs published by Springer Nature and leading Chinese publishers. He has played key roles in the development of national and group standards for engineering vibration control and holds over 25 granted patents, with many more under review. His work has been widely applied in precision equipment, industrial buildings, nuclear and seismic engineering, delivering significant societal and engineering impact.

Citation Metrics (Scopus)

1500

1200

500

200
0

Citations
1,254
h-index
18
Documents
181

Citations

h-index

Documents

Changsen Sun | Engineering | Research Excellence Award

Prof. Changsen Sun | Engineering | Research Excellence Award

College of Optoelectronic Engineering and Instrumentation Science | China

Professor Changsen Sun is a senior scholar in Optical Engineering and a long-standing faculty member at Dalian University of Technology (DUT), China, where he currently serves as Professor in the College of Optoelectronic Engineering and Instrumentation Science. He earned his bachelor’s and master’s degrees in Electrical Engineering from Jilin University of Technology and completed his Ph.D. in Optical Engineering at Dalian University of Technology. With more than three decades of academic experience, Professor Sun has built a distinguished career integrating fundamental optical science with engineering-oriented applications. Professor Sun’s primary field of expertise lies in optical fiber sensing technologies and their engineering applications, with particular emphasis on precision measurement, instrumentation, and real-world deployment of fiber-optic sensor systems. His research has contributed to advancements in high-sensitivity sensing, system reliability, and the integration of optical fiber sensors into complex engineering environments. He has led and completed more than 20 competitive research projects, securing over 15 million RMB in research funding, reflecting strong national-level recognition of his scientific and technical capabilities. His scholarly output includes over 30 peer-reviewed journal articles, published in leading international journals such as Optics Letters and IEEE Transactions on Instrumentation and Measurement, demonstrating sustained contributions to both theoretical development and applied innovation in optical sensing and measurement science. In addition to research productivity, Professor Sun has played a significant academic leadership role, notably serving as Director of the Doctoral Program in Optical Engineering (2019–2022), where he contributed to talent cultivation, curriculum development, and doctoral training quality.

Citation Metrics (Scopus)

1500
1200
800
400
0

Citations
1,533

Documents
101

h-index
22

Citations

Documents

h-index

Featured Publications

Guang Feng | Engineering | Best Research Article Award

Dr. Guang Feng | Engineering | Best Research Article Award

Taiyuan University of Technology | China

Professor Guang Feng is a distinguished scholar and research leader in mechanical engineering, currently serving as a Center Director at Taiyuan University of Technology, China. He received his Ph.D. from Dalian University of Technology and further broadened his international research perspective as a Visiting Scholar at the University of Nottingham. His expertise lies in advanced metal forming and manufacturing technologies, with a particular focus on metal laminate rolling processes, ultra-precision machining technologies and equipment, and the processing of complex structural components for high-performance engineering applications. Professor Feng has led or participated in 30 completed and ongoing research projects, including 8 consultancy and industry-oriented projects, demonstrating strong integration of fundamental research with industrial application. His scholarly output includes 38 peer-reviewed journal publications, one academic book (ISBN registered), and an impressive portfolio of 33 patents granted or under process, reflecting sustained innovation and strong translational impact. His research contributions are widely recognized through citations documented on international academic platforms, underscoring his influence in the field of metal processing and advanced manufacturing. Among his most significant contributions are the establishment of a novel lattice severe deformation rolling principle for metallic laminates, the development of a theoretical framework for predicting bonding strength in roll-bonded heterogeneous metal composites, and the construction of a high-accuracy mathematical model for predicting plate warpage in rolled metal laminates.

Citation Metrics (Scopus)

200

150

100

50

0

Citations
195

Documents
24

h-index
7

Citations

Documents

h-index

View Scopus Profile

Featured Publications

Asma Alfergani | Engineering | Best Researcher Award

Ms. Asma Alfergani | Engineering | Best Researcher Award

University of Benghazi | Libya

Dr. Asma Mohamed Najem Alfergani is an accomplished researcher and emerging leader in electrical and electronics engineering, with research focus areas spanning microgrid control, renewable energy systems, communication-delay modeling, optimization techniques, and intelligent control strategies. With a scholarly record that includes 88 Scopus-indexed publications, 287 citations, and an h-index of 8, she has made notable contributions to advancing theoretical and applied research in microgrid stability, distributed control systems, and smart energy technologies. Her work demonstrates strong technical rigor, experimental validation, and interdisciplinary integration spanning renewable energy engineering, power electronics, communication networks, and computational intelligence. Dr. Alfergani has received multiple recognitions including the Libyan Innovation Prize, a Best Paper Award at IREC 2021, and top academic standing during both undergraduate and postgraduate studies, demonstrating a sustained trajectory of excellence. Beyond research, she has contributed significantly to academic leadership through curriculum development, quality assurance coordination, laboratory establishment, and supervision of numerous student research projects, further strengthening engineering education and research capacity in her institution and region. Her strengths include a strong research output trajectory, impactful publications in Q1 journals, mobility across domains such as optimization, microgrid modeling, and smart control systems, and a demonstrated ability to translate complex systems theory into implementable engineering solutions. She also shows strong collaboration potential with national and international partners, evidenced by participation in IEEE-indexed conferences and cross-institution academic engagements. Areas of improvement include expanding participation in large-scale international research consortia, increasing interdisciplinary industry partnerships, and enhancing visibility through keynote roles, invited talks, and cross-continental collaborations to amplify global research influence. Looking ahead, Dr. Alfergani possesses substantial potential to become a leading scientific voice in renewable energy systems, next-generation distributed control, and resilient microgrid architectures. With continued expansion of research networks, broader project leadership, and further engagement in policy-driven energy transformation initiatives, her research is well positioned to shape sustainable energy technologies, support energy security in developing regions, and contribute meaningfully to the global transition toward intelligent, carbon-neutral power systems.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

Khalil, A., Rajab, Z., Alfergani, A., & Mohamed, O. (2017). The impact of the time delay on the load frequency control system in microgrid with plug-in-electric vehicles.

Alfergani, A., Alfaitori, K. A., Khalil, A., & Buaossa, N. (2018). Control strategies in AC microgrid: A brief review.

Alfergani, A., Khalil, A., & Rajab, Z. (2018). Networked control of AC microgrid.

Alfergani, A., & Khalil, A. (2017). Modeling and control of master-slave microgrid with communication delay.

Alfergani, A., Khalil, A., Rajab, Z., Zuheir, M., Khan, S., & Aboadla, E. H. (2017). Control of Master-Slave Microgrid Based on CAN Bus.

Ahmed Issa Alnahhal | Engineering | Research Excellence Award

Mr. Ahmed Issa Alnahhal | Engineering | Research Excellence Award

Budapest University of Technology and Economics | Hungary

Mr. Ahmed Issa Alnahhal is an Electrical Engineer and emerging scholar specializing in advanced photovoltaic technologies, hybrid renewable energy systems, and semiconductor device fabrication. With more than ten years of combined academic, research, and engineering experience, he has developed strong interdisciplinary expertise spanning cleanroom fabrication processes, semiconductor device physics, thin-film characterization, and photovoltaic system modelling. He is currently pursuing his PhD in Electrical Engineering at Budapest University of Technology and Economics, Hungary, where his research focuses on advanced Hybrid Photovoltaic–Thermoelectric Generator (PV-TEG) systems and Perovskite/Si tandem solar cells. His work includes simulation, optimization, loss analysis, and experimental fabrication of next-generation energy harvesting systems. Ahmed has authored multiple peer-reviewed journal articles and conference papers in top-tier platforms, including IEEE Transactions on Components, Packaging and Manufacturing Technology, Advanced Theory and Simulation, and Energy Conversion and Management X. His key contributions include extending the single-diode solar cell model using spectral sensitivity, analyzing spectrum-splitting photovoltaic–thermoelectric architectures, and developing mathematical models for hybrid and tandem photovoltaic systems. His publications have been presented at prestigious international conferences such as CANDO-EPE, THERMINIC, and IWTPV, reflecting international relevance and scientific rigor. His academic engagement includes teaching courses in semiconductor device physics, advanced solar cell technologies, and microelectronics. Professionally, he brings extensive experience in PCB design, electronics testing, laboratory coordination, and system-level integration. Ahmed has participated in specialized technical programs hosted by Infineon Technologies, Czech Technical University, and Warsaw University of Technology, strengthening his global research footprint and industrial alignment. Driven by sustainability and energy security challenges, his research aims to improve the efficiency and accessibility of solar energy systems, contributing to long-term environmental and industrial impact. Through collaboration, innovation, and practical engineering problem-solving, Ahmed continues advancing the frontier of high-efficiency solar energy conversion technologies.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

Alnahhal, A. I., Halal, A., & Plesz, B. (2022). Thermal-electrical model of concentrated photovoltaic-thermoelectric generator combined system for energy generation. Proceedings of the International Workshop on Thermal Investigations of Integrated Circuits and Systems.

Alnahhal, A. I., Halal, A., & Plesz, B. (2022). Temperature-dependent performance of concentrated monocrystalline silicon solar cell. Proceedings of the International Scientific Conference on Electric Power Engineering.

Halal, A., Alnahhal, A. I., & Plesz, B. (2022). Performance analysis of perovskite solar cell by considering temperature effect on physical parameters of the absorber layer. Proceedings of the International Workshop on Thermal Investigations of Integrated Circuits and Systems.

Halal, A., Alnahhal, A. I., & Plesz, B. (2022). Numerical simulation and design optimization of highly efficient lead-free perovskite/c-Si tandem solar cell. Proceedings of the International Scientific Conference on Electric Power Engineering.

Halal, A., Alnahhal, A. I., & Plesz, B. (2022). Numerical simulation-based physical parameter analysis of perovskite/c-Si tandem photovoltaic cells. Proceedings of the International Scientific Conference on Electric Power Engineering.

Kasye Shitu Mulat | Engineering | Editorial Board Member

Mr. Kasye Shitu Mulat | Engineering | Editorial Board Member

Anhui University | Ethiopia

Mr. Kasye Shitu Mulat is an accomplished Irrigation Engineer and GIS & Remote Sensing Specialist with extensive academic, research, and professional experience in water resources, climate change impacts, hydrological modeling, and sustainable agricultural development. Born on 02 October 1991 in Borena Mekane Selam, Ethiopia, he currently serves as a Lecturer and Researcher at Assosa University, where he contributes to teaching, scientific research, and community-centered development initiatives. Mr. Kasye earned his Bachelor of Science in Water Resource and Irrigation Management from Aksum University with Very Great Distinction (CGPA 3.64). He later completed his MSc in Irrigation Engineering at Haramaya University, achieving an “A” thesis grade and a CGPA of 3.79. Further expanding his scientific expertise, he obtained a second Master of Science in GIS and Remote Sensing from Wollo University. His multidisciplinary background positions him at the forefront of research linking climate dynamics, hydrological systems, and agricultural water management. He has authored more than 11 peer-reviewed publications and has four additional manuscripts under review in reputable international journals. His research outputs span topics such as climate change impacts on irrigation potential, hydrological modeling of river basins, statistical downscaling, kriging-based spatial analyses, land use/land cover dynamics, and soil–water interactions. His works have contributed to improving understanding of the Upper Blue Nile Basin, Borkena Catchment, and other key Ethiopian watersheds. In addition to academic research, Mr. Kasye has led impactful community engagement projects, including free-energy garden irrigation initiatives and wheat production enhancement programs across Benishangul-Gumuz. These interventions have strengthened food security, improved smallholder livelihoods, and promoted climate-resilient agricultural practices. With advanced skills in ArcGIS, SWAT, HBV, R, GAMS, CropWat, and hydrological modeling software, he collaborates with agricultural offices, university research committees, and interdisciplinary teams. His contributions continue to influence regional water resource planning, climate adaptation strategies, and sustainable development efforts in Ethiopia.

Profile: Scopus

Featured Publications

  1. (2025). Assessing drought dynamics in a semi-arid basin: A multi-index approach using hydrological and remote-sensing indicators. Environmental Sciences Europe.

Olufisayo Emmanuel Ojo | Engineering | Best Researcher Award

Mr. Olufisayo Emmanuel Ojo | Engineering | Best Researcher Award

Durban University of Technology | South Africa

Mr. Olufisayo Emmanuel Ojo is an accomplished Electromechanical and Water Engineer with over 18 years of multidisciplinary experience spanning design, project management, and sustainable infrastructure development. His professional expertise centers on renewable energy systems, water and wastewater management, electromechanical optimization, and hydraulic modeling, areas in which he has contributed extensively to national and international engineering projects. With a portfolio of 88 scholarly documents, over 2,500 citations, and an h-index of 27, Mr. Ojo has demonstrated sustained research productivity and influence within the global engineering and sustainability community. He has served as a technical consultant and project engineer for numerous international development organizations, including the World Bank, African Development Bank (AfDB), French Development Agency (AFD), and USAID, where he played a key role in the design and implementation of large-scale water supply and renewable energy infrastructure. His work emphasizes sustainable development, energy efficiency, and resilience in engineering design, integrating both academic insight and field-based innovation. Mr. Ojo’s projects often focus on the optimization of electromechanical systems, renewable-powered desalination, and the application of smart technologies for improved water distribution and environmental performance. A chartered engineer and member of several professional institutions such as COREN, NSE, and IET (UK), he combines technical proficiency with strong leadership and policy-oriented vision. His interdisciplinary collaborations with researchers, engineers, and policymakers have resulted in impactful publications and innovative engineering solutions that address critical challenges in climate change adaptation, energy transition, and sustainable resource management. Mr. Ojo’s academic contributions, technical leadership, and international collaborations highlight his commitment to advancing global engineering standards. His work continues to inspire a new generation of engineers through the integration of research-driven innovation and practical sustainability, contributing to both societal progress and the achievement of global sustainable development goals.

Profile: ORCID

Featrued Publications

Ojo, O. E., & Oludolapo, O. A. (2025). Innovative recovery methods for metals and salts from rejected brine and advanced extraction processes—A pathway to commercial viability and sustainability in seawater reverse osmosis desalination. Water, 17(21), 3141.

Ojo, O. E., & Oludolapo, O. A. (2025). Cost–benefit and market viability analysis of metals and salts recovery from SWRO brine compared with terrestrial mining and traditional chemical production methods. Water, 17(19), 2855.

Ojo, O. E., & Oludolapo, O. A. (2025). Modeling a reverse osmosis desalination plant: A practical framework using Wave software. Science, Engineering and Technology, 5(2), Article 273.

Ojo, E. O., & Oludolapo, O. (2024). A review of renewable energy powered seawater desalination treatment process for zero waste. Water, 16(19), 2804.

Darkhan Yelemes | Engineering | Best Researcher Award

Assist. Prof. Dr. Darkhan Yelemes | Engineering | Best Researcher Award

Kazakh Automobile and Highway Institute named after L.B. Goncharov, Kazakhstan

Assist. Prof. Dr. Darkhan Yelemes is a distinguished Kazakh scholar and engineer recognized for his outstanding contributions to mechanical and civil engineering, with a specific focus on transport construction, road machinery, and urban infrastructure systems. His academic expertise lies in the development and optimization of construction, hoisting-transport, mining, and municipal machines, contributing significantly to the modernization of Kazakhstan’s industrial and transport sectors. Throughout his academic career, he has demonstrated strong leadership in research and education, combining technical innovation with applied engineering solutions aimed at advancing sustainable infrastructure. Dr. Yelemes has authored and co-authored more than 100 scientific publications, including high-impact papers indexed in Thomson Reuters and Scopus, as well as three textbooks, an electronic manual, and over a dozen methodological works approved by the Ministry of Education and Science of the Republic of Kazakhstan. His contributions are further evidenced by multiple patents—one national and six innovative patents of Kazakhstan—reflecting his commitment to applied research and technological advancement. He has also authored two monographs that have become important references in his field. A dedicated educator and researcher, Dr. Yelemes has collaborated with international institutions such as Wrocław University of Science and Technology (Poland), engaging in global academic exchanges that enhance cross-border research in transport and construction engineering. His achievements have been recognized with several prestigious honors, including the Gold Medal named after Academician A.A. Abdulin, the Medal “For Merit in the Development of Science of the Republic of Kazakhstan,” and the Bronze Medal named after A. Baitursynov for contributions to higher education and specialist training. As a member of national and international scientific societies, Dr. Yelemes continues to foster innovation, promote knowledge transfer, and support the next generation of engineers. His work exemplifies a deep commitment to advancing science and technology for societal and infrastructural progress, bridging academia and industry toward a sustainable and technologically advanced future.

Profiles: Scopus | ORCID

Featured Publications

  1. Wieleba, W., Leśniewski, T., Elemes, D., & Elemes, A. (2021). Friction processes of selected polymers sliding on steel and duralumin in a lubricant environment. Tribologia.

  2. Sherov, K. T., Mardonov, B. T., Buzauova, T. M., Tussupova, S. O., Smakova, N. S., Izotova, A. S., Gabdyssalik, R., Kurmangaliyev, T. B., & Elemes, D. E. (2020). The research of micro-hardness of side surfaces of teeth cylindrical wheels processed by “shaver-rolling device.” Journal of Theoretical and Applied Mechanics (Bulgaria).

  3. Alyzhanov, M. K., Sikhimbayev, M. R., Kuzembayev, S. B., Sherov, K. T., Sikhimbayeva, D. R., Khanov, T. A., Kurmangaliyev, T. B., Elemes, D. E., Donenbayev, B. S., & Musaev, M. M., et al. (2016). Optimization of the conditions of convective drying of thermosensitive materials. Journal of Theoretical and Applied Mechanics (Bulgaria).

  4. Abdeev, B. M., Yelemes, D. E., & Sakimov, M. A. (2013). Circular plate-membrane with small deflection and maximum sensitivity. In Advanced Materials Research (Vol. 739, pp. 376–381).

  5. Yelemesuly, Y. D., & Kalieva, A. D. (2013). Studying grading of non-metallic materials on the spiral screen. In Key Engineering Materials (Vols. 531–532, pp. 346–351).

Assist. Prof. Dr. Darkhan Yelemes’ work advances the design and optimization of transport, construction, and urban infrastructure systems, driving technological innovation in engineering. His research enhances industrial efficiency, supports sustainable infrastructure development, and fosters practical solutions with global applicability in mechanical and civil engineering.

Kai Zhao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Kai Zhao | Engineering | Best Researcher Award

Dalian Maritme University, China

Assoc. Prof. Dr. Kai Zhao is an accomplished researcher and academic at the School of Information Science and Technology, Dalian Maritime University, specializing in optoelectronic information science, micro-nano sensing, and environmental monitoring technologies. He obtained his Ph.D. in Mechanical and Mechatronics Engineering from the University of Waterloo, Canada, in 2019, and subsequently completed a postdoctoral fellowship at ETH Zurich, Switzerland, before joining Dalian Maritime University as an Associate Professor in 2020. His professional experience covers teaching and research in areas such as micro-nanophotonic integration, digital logic design, signal and image processing, and optoelectronic detection systems, coupled with leadership in advanced projects funded by the National Natural Science Foundation of China, Liaoning Provincial Foundation, and international innovation programs. Dr. Zhao’s research interests focus on micro-nano sensing and detection, microfluidic chips, artificial intelligence for micro-nano target recognition, intelligent sensing of marine micropollutants, microbial detection, clean energy, and invasive species identification, all of which reflect his commitment to sustainable marine technology and global environmental solutions. He is highly skilled in micro-nano device fabrication, photoelectric detection, signal analysis, microfluidics, and integrated circuit applications, with an impressive publication record of 36 research articles, cited over 704 times with an h-index of 15, in leading journals including Nature Communications, Environmental Pollution, Analytical Chemistry, ACS Applied Materials & Interfaces, IEEE Transactions on Instrumentation and Measurement, and Nanoscale. His academic excellence has been recognized with numerous awards and honors, such as the First Prize of Guangdong Environmental Protection Science and Technology Award (2024), the Innovation Team Award from the China Society of Naval Architecture and Shipbuilding (2023), the Science and Technology Progress Award of the China Instrument and Control Society (2022), and the National Teachers’ Teaching Innovation Competition Prize (2023). In conclusion, Dr. Zhao’s blend of strong academic foundations, pioneering research achievements, international collaborations, and leadership in both teaching and mentorship demonstrate his exceptional contributions to science, positioning him as a rising global leader in optoelectronics, micro-nano sensing, and environmental monitoring technologies.

Profiles:  Scopus | ORCID | Google Scholar | LinkedIn

Featured Publications

  1. chDing, S., Dang, Y. G., Li, X. M., Wang, J. J., & Zhao, K. (2017). Forecasting Chinese CO₂ emissions from fuel combustion using a novel grey multivariable model. Journal of Cleaner Production, 162, 1527–1538.

  2. Zhao, K., Wei, Y., Dong, J., Zhao, P., Wang, Y., Pan, X., & Wang, J. (2022). Separation and characterization of microplastic and nanoplastic particles in marine environment. Environmental Pollution, 297, 118773

  3. Zhao, K., Larasati, Duncker, B. P., & Li, D. (2019). Continuous cell characterization and separation by microfluidic alternating current dielectrophoresis. Analytical Chemistry, 91(9), 6304–6314.

  4. Alvarez, L., Fernandez-Rodriguez, M. A., Alegria, A., Arrese-Igor, S., Zhao, K., & others. (2021). Reconfigurable artificial microswimmers with internal feedback. Nature Communications, 12, 4762.

  5. Zhao, K., & Li, D. (2017). Continuous separation of nanoparticles by type via localized DC-dielectrophoresis using asymmetric nano-orifice in pressure-driven flow. Sensors and Actuators B: Chemical, 250, 274–284.